

MASS MODELING AND ENERGY SIMULATION FOR GREEN BUILDING USING REVIT

prof. arch. Giuseppe Ridolfi PhD

WHAT ARE:

MASS MODELING ENERGY SIMULATION GREEN BUILDING REVIT

WHAT IS MODELING

SKETCHING • DRAWING • DRAFTING DESIGNING - MODELING

RE-PRESENTATION SKETCHING

10 Je Je many

Renzo Piano, Tjibaou Cultural Centre, Nouméa, New Caledonia, 1998

Picasso, Studio for Guernica, 1937

Sketching is a freehand drawing representing the preliminary phase of a drawing. It has a gestural character, based on immediate actions without corrections and few details intended to capture an idea or an experience. It expresses approximative essentiality.

Van Gogh's Studies

Henri Matisse Nu assis les bras étendus Print, Lithograph, Expressionist 1925

Vincent van Gogh Drawing, Pencil, black chalk Saint-Rémy: March - April, 1890

Gauguin's Sketchbook

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

DRAWING

Drawing has a more thoughtful character and its excecution is based on a form of planning represented by the use of construction lines. It is detailed although it can be freehand

DRAFTING

Drafting is the act of producing drawings based on calculation, measure, and precision. It is a technical activity in which the design idea come alive in an accurate and formal representation intended for the production of the conceived objects.

DESIGNING

Design is the process of generating and presenting ideas and projects through forms and tools of the visual language fitting expectd goals and requirements.

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

ISOMORPHIC MODELS

Morfological Model or "Depictional" representation

Simulation in order to understand **how it looks**

Filippo Brunelleschi, Modello ligneo Cupola del Duomo, 1420-1440 circa, Firenze, Museo dell'Opera di Santa Maria del Fiore

- Fotografia di Antonio Quattrone

A SCALED MODEL AS AN EXPERIMENT to understand how reality behaves

The simulation differentiate itself from experiments where experiments are conducted on reality iteslef, using the same matter while simulation operates through the interposition of other and different materials. Traditionally models and simulations are mainly representative, experiments are descriptive.

Massimo Ricci, Modello in scala della Cupola di S. Maria del Fiore in Firenze

SIMULATION IS ANOTHER WAY TO UNDERSTAND REALITY BASED ON ABSTRACTION: THIS ABSTRACTION IS THE MODEL

MODELING: the Language of Design

Simulation to understand how reality behaves and how it works

R. Mark. Force visualization on Gothic Cathedral usign polarized light and plexliglass ('70s)

MODELING: the Language of Design

"Design is not just what it looks like and feels like. Design is how it works." S. Jobs (1955-2011)

MODELS TO VISUALIZE MATTER BEHAVIOURS

Functionality and Performance Design

Frey Otto's studies & researches

1 Soap film model of an arch-supported membrane.

2 Soap-film model of a membrane surface with rope loop as its high point.

3 Computer simulation of a minimal surface with rope loop.

DIAGRAM: THE ABSTRACT MACHINE

..a map of relations between forces"

Deleuze, A Thousand Plateaus (1988)

AKT, South Bank Pavilion (Zaha Hadid). Load paths. © Adams Kara Taylor (AKT).

Static (informative) vs Dynamic (performative) Model

Antique map of the medioeval Florence

Monopoly Game Board

PERMUTATIONAL OUTPUTS FROM A PARAMETRIC MODEL

PERMUTATION 1

PERMUTATION 5

PERMUTATION 9

PERMUTATION 13

PERMUTATION 2

PERMUTATION 10

PERMUTATION 14

PERMUTATION 3

PERMUTATION 4

PERMUTATION 7

PERMUTATION 8

PERMUTATION 11

PERMUTATION 12

PERMUTATION 16

MANY DIFFERENT BEHAVIOURS FROM A PARAMETRIC MODEL

"... digital tools give us an holistic and visual perception of fenomena in order to have a faster comprehension of a large quantity of aspects" G.Ridolfi

Designing as a scientific process

(Decision making testing – through different simulations – variable conditions)

What if ?

Reading Text: Learning Design Through Designerly Thinking. Holistic digital modeling in a graduate program in architecture. https://www.mailab.biz/designerly/

defining the final solution through the evaluation of alternatives

OPTIONEERING

70 floors, 282.5 m high

completed in 1930 (11 months)

Manhattan Bank, then Trump Building H. Craig Severance

77 floors, 319 m high

completed in 1930 (20 months including 2 months of demolition)

Chrysler Building William Van Alen

Empire State Building

Designed by: Shreve, Lamb and Harmon

Facts:

102 storeys381 m. tall(443.2 m including the antenna)20 months to open it

including

- Demolition of Waldorf Astoria Hotel
- -Design
- -Authorizations
- -Financing
- -Construction (1 year and 45 days)

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

From Sep. the 16th to October the 3^d, 1929 16 alternatives (2 by day) were delivered and compared.

The night of the last day the 17th solution (the Solution K) was approved

Modeling & Performance Simulation using Computational Design

TRADITIONAL APPROACH

louis kahn sketches

Decision-Making through: -rules of thumb -individual intuition -experience & tacit knowledge

COMPUTATIONAL MODELING FOR SIMULATION

"This process is similar to the scientific process, which involves asking questions, framing a solvable experiment to answer the question, testing, and intepreting the results" к. Andersonn

DIGITAL APPROACH

Computational Design as a scientific research

Decision-Making through: formal procedures evidence-based observation

benchmarking

MODELING FOR SIMULATION NUMERICALLY PERFORMANCE BASED

features:

precision objectivity replicability communicability

2.3 and 2.4

Andrew Marsh, creator of Ecotect, has been experimenting with real-time, on-line daylighting simulation. The room and windows can be adjusted to see real-time daylight factor results.

Source; Courtesy of Andrew Marsh. http://andrewmarsh.com/blog/ 2010/04/11/real-time-dynamicdaylighting.

Powerful tools for gamers

PROPERTIES: DAYLIGHT SETTINGS

PLAYING OPTIONS AND UNDERSTANDING CAUSALITY

http://andrewmarsh.com

In **Parametric Design** the user defines relationships between traditionally drawn or sculpted elements.

With **Design Automation** the user gets the ability to automate tasks within parametric models, by driving the parameters with automated scripts.

In **Computational Modelling**, the user explicitly describes a process to create a design outcome.

With **Option Generation**, the user explores of variations of computed rules given different starting points for the calculations

With **Design Optimization**, the user defines explicit goals and a computational or parametric model is automatically explored for states that fit those goals

A goal-driven approach using automation where users set specific parameters and goals and the machine generate and evaluate many potential solutions that, under designer guide, fits better.

Ultimately, with **Machine Learning** (ML), the user states outcomes and the system returns conforming results based on historical data.

Testing the trade-off in order to be aware of how configurations and elements can affect behaviours and produce differente results

Testing the trade-off in order to be aware of how configurations and elements can affect behaviours and produce differente results

Digital Modeling give us ethical responsabilities of our choices based on evidence of proof

Ethical responsibility about us and the environment we live

Because the built environment and constructions are one of the largest factor that affect our living

Inside the US Construction, Buildings sector represents:
49% Energy consumption
77% Electricity consumption
47% Carbon Dioxide emission

For architects reducing impacts is a big ethical responsability

According *Architecture 2030 Program* in 2035 75% of building will be renovated or rebuilt

The 2030 Challenge Targets

The Architecture 2030 Challenge allows up to 20% of the overall energy reduction to come from off-site renewable energy. The carbon-neutral target uses no fossil fuel/GHG-emitting energy to operate.

GREEN BUILDINGS

GREEN BUILDINGS

Building with nearly zero emission and consumption

HOW TO EVALUATE ENERGY PERFORMANCE

GREEN METRICS & CERTIFICATIONS

is a voluntary standard based on EUI

GREEN METRICS & CERTIFICATION

HOW TO EVALUATE ENERGY PERFORMANCE

Baseline solution or standardized metrics

Voluntary certifications

international sustainable building certification program

USA

- LEED Leadership in Energy and Environmental Design (very expensive) U.S. Green Building Council (USGBC)
- ENERGY STAR, U.S. Environmental Protection Agency in conjunction with the U.S. Department of Energy
- NATIONAL GREEN BUILDING STANDARD, National Association of Home Builders (NAHB)
- GREEN GLOBES operates in the US by the Green Building Initiative
- **<u>GREENGUARD</u>**, Greenguard Environmental Institute, (focused on quality of indoor air)

US-CANADA

• <u>LBC</u> - Living Building Challenge, 2006, International Living Future Institute.

EU

- <u>NZE</u> Nearly Zero Energy > Net Zero Energy (considering energy produced)
- <u>PASSIVEHAUS</u>, 1988 Adamson Lund University (Sweden) + Wolfgang Feist dell'Institut für Umwelt und Wohnen (D)
- BREEAM (Building Research Establishment Environmental Assessment Method), BRE

2030 Framework for climate and energy

HOW THESE CONSUMPTION ARE MEASURED?

EUI ANNUAL ENERGY USE INTENSITY = EDI - EPI

Energy Demand Intensity (EDI) Energy Production Intensity (EPI)

EUI ANNUAL ENERGY USE INTENSITY = EDI - EPI

EUI (Energy Use Intensity)

Definition: Energy Use Intensity is a building's annual energy use per unit area. It is typically measured in thousands of BTU per square foot per year (**kBTU/ft2/yr**) or **kWh/m2/yr**. EUI **can measure "site" energy use** (what the building consumes) or "source" energy use (the amount of fuel the power plant burns to produce that much energy). Unless otherwise specified, **EUI typically refers to "site" energy use**.

Energy Demand Intensity (EDI) Energy Production Intensity (EPI)

EUI - ANNUAL ENERGY USE INTENSITY kBtu/sf/year kW/m2/year

allows us to run energy comparison between different buildings on a per unit area basis

Evaluation also considers in which way energy is produced inside the whole production and distribution process including looses. For example for coal is considered a reduction of 50%

But he evaluation of CO2 emissions is more meaningful

Conversions of Common Energy Modeling Units

From Inch-Pound (IP) to the International System (SI)

1 footcandle	=	10.76 Lux (illuminance; most practitioners assume 1 footcandle = 10 Lux)
1 Btu/h/ft ²	=	3.16 Watts/m ² (instantaneous power incident on a surface)
1 Btu/ft ²	÷	3.16 Watts* hours/m ² (units of energy on a surface over time)
1 Btu	=	.293 Wh (unit of energy)
kBtu/ft²/year	E	11.352 MegaJoules/m ² /year (Energy Use Intensity, annual measure of energy use per unit area)
1 W/ft ²	÷	.093 W/m² (Plug Load or Lighting Power Density, usually per room area)
U value (Btu/ft²/h/°F)	=	5.678 U value (W/m ² /°C) (conductivity of a material or assembly, where U = 1/R)
1 ft ² /minute	=	.000472 m²/second (air change rate due to infiltration or fresh air supply)
1 Foot/second	÷	.681 miles/hour = .3048 m/second = 1.097 km/hour (speed, often in relation to airspeed)
°F	=	(5/9)°C + 32 (Temperature)

Check this website for converter: http://www.endmemo.com/sconvert/w_m2btu_sft2.php

USING MICROSOFT EXCEL TO CONVERTE EVERYTHING.

Syntax in English version

=CONVERT (B6, "BTU", "Wh")/CONVERT(CONVERT(1, "ft", "m"), "ft", "m")

Syntax in Italian version =CONVERTI(B6;"BTU";"Wh")/CONVERTI(CONVERTI(1;"ft";"m");"ft";"m")

Energy	Unit
Joule	"J"
Erg	"e"
Thermodynamic calorie	"c"
IT calorie	"cal"
Electron volt	"eV" (or "ev")
Horsepower-hour	"HPh" (or "hh")
Watt-hour	"Wh" (or "wh")
Foot-pound	"flb"
BTU	"BTU" (or "btu")
Power	Unit
Horsepower	"HP" (or "h")
Watt	"W" (or "w")

https://sefaira.com/resources/six-metrics-every-architect-should-know-and-how-to-use-them/

5 sefail		Sean	ch
Definition: En measured in t measure "site" fuel the power typically refere	nergy Use Intensity is a buildin housands of BTU per square " energy use (what the buildir r plant burns to produce that s to "site" energy use.	ng's annual energy use foot per year (kBTU/ft2 ng consumes) or "sourc much energy). Unless o	per unit area. It is typically 2/yr) or kWh/m2/yr. EUI can e" energy use (the amount of otherwise specified, EUI
Why it's impo and locations. operating cost specific EUI gc public reportin Typical value	rtant: EUI is useful for comp It can help you design buildin ts. It is used by programs like bals for different building type ong in many cities. s: Below are some average E	baring performance of b ngs with low energy use ENERGY STAR and the es. It is also being used UIs for three building ty	ouildings across sizes, types, e, and, as a likely result, lower 2030 Challenge, which have to benchmark buildings for ypes in the US. (These
are meant to g & specific space	give a rough idea of EUI range ce uses.)	es; actual values can va	ry widely based upon location
	Source EUI (power plant's energy consumption)	Site EUI (building energy consumption)	2030 Challenge target (60% reduction, site EUI)
Office	148 kBTU/ft2/yr 467 kWh/m2/yr	67 kBTU/ft2/yr 211 kWh/m2/yr	27 kBTU/ft2/yr 85 kWh/m2/yr
K-12 Education	141 kBTU/ft2/yr 445 kWh/m2/yr	58 kBTU/ft2/yr 183 kWh/m2/yr	23 kBTU/ft2/yr 73 kWh/m2/yr
Single-family	68 kBTU/ft2/yr	46 kBTU/ft2/yr	18 kBTU/ft2/yr

EVALUATION IN RELATIONSHIP WITH BASELINE SOLUTION based on current average benchmark

EVALUATION IN RELATIONSHIP WITH BASELINE SOLUTION based on current average benchmark

ELEMENTS THAT AFFECT ENERGY CONSUMPTION

HEATING COOLING APPLIANCES HOT WATER LIGHTING

EVALUATION IN RELATIONSHIP WITH BASELINE SOLUTION based on current average benchmark

Primary Space / Building Type	Ave. % Electric	med	Site EUI 70%	90%
Education	63	58	17.4	5.8
College/University (campus-level)	63	104	31.2	10.4
Food Sales	86	193	57.9	19.3
Convenience Store (w/ or w/o gas)	90	228	68.4	22.8
Food Service	59	267	80.1	26.7
Fast Food	64	418	125.4	41.8
Restaurant/Food Market	53	207	62.1	20.7
Health Care and Outpatient	72	62	18.6	6.2
Clinic/ Other Outpatient Health	76	67	20.1	6.7
Lodging	61	72	21.6	7.2
Mall (strip mall and enclosed)	71	94	28.2	9.4
Public Assembly	57	42	12.6	4.2
Entertainment/Culture	63	46	13.8	4.6
Library	59	92	27.6	9.2
Recreation	55	39	11.7	3.9
Social/Meeting	57	43	12.9	4.3
Public Order & Safety	57	82	24.6	8.2
Fire Station/Police Station	56	82	24.6	8.2
Service (vehicle repair/postal service)	63	45	13.5	4.5
Storage/Shipping/ Non-refrigerated warehouse	56	10	3.0	1.0
Retail Store (non-mall stores, vehicle dealerships)	67	53	15.9	5.3
Other (varies greatly)	56	70	21.0	7.0

Targets based on

U.S. Commercial Building National Average

Energy Use Intensity (EUI) Targets, U.S. Commercial Buildings, National Averages, kBtu/ft²-yr Use for occupancy types not in "EPA Target Finder" or in "Energy Use Intensity (EUI) Targets, by Building Type and Climate Zone."

Derived from Architecture 2030 (2012), based on EPA (2011) and Energy Information Administration's Commercial Building Energy Use Survey (CBECS), 2003; using the EPA's Table 1: 2003 CBECS National Average Source Energy Use and Performance Comparisons by Building Type.

ENVIRONMENTAL DESIGN

prof. arch. Giuseppe Ridolfi

ASHRAE Climate Zones	City		5.500 sf / 1story	Francis Line oppoint		Medium Office 53,628 sf / 3 story			Large Office 498.588 sf / 12 story			Medical Office 40.946 st / 3 story			Primary School 73.960 st / 1 story			Secondary School 210,887 sf / 2 story		Hospital (general	medical & surgical) 241.351 st / 5 st			Senior Care Facility 20.025 sf / 1 storv			Hotel (small) 43.200 sf / 4 story	
_		med	70%	90%	med	70%	90%	med	70%	90%	med	70%	90%	med	70%	90%	med	70%	90%	med	70%	90%	med	70%	90%	med	70%	90%
1A	Honolulu, HI	64	19	6	91	27	9	107	32	11	155	47	7 16	42	13 4		74	22 7		302	91 30		157	47	16	82	25	8
1A	San Juan, PR	53	16	5	75	23	8	88	26	9	185	56	19	27	8	3	51	15	5	172	52	17	105	32	11	56	17	6
1A	Miami, FL	63	19	6	89	27	9	105	32	11	140	42	14	49	15	5	76	23	8	266	80	27	140	42	14	73	22	7
2A	Houston, TX	61	18	6	88	26	9	103	31	10	122	37	12	59	18	6	76	23	8	256	77	26	135	41	14	72	22	7
28	Phoenix, AZ	68	20	7	96	29	10	112	34	11	173	52	17	72	22	7	107	32	11	305	92	31	163	49	16	89	27	9
3A	Atlanta, GA	57	17	6	84	25	8	99	30	10	95	29	10	59	18	6	62	19	6	239	72	24	125	38	13	67	20	7
38-CA	Los Angeles, CA	47	14	5	74	22	7	90	27	9	69	21	7	65	20	7	55	17	6	249	75	25	120	36	12	57	17	6
3B-other	Las Vegas, NV	65	20	7	84	25	8	108	32	11	140	42	14	74	22	7	93	28	9	289	87	29	153	46	15	84	25	8
30	San Francisco	51	15	5	78	23	8	94	28	9	73	22	7	62	19	6	60	18	6	247	74	25	123	37	12	64	19	6
4A	Baltimore, MD	59	18	6	85	26	9	101	30	10	91	27	9	60	18	6	58	17	6	233	70	23	123	37	12	70	21	7
48	Albuquerque, NM	61	18	6	88	26	9	104	31	10	106	32	11	74	22	7	73	22	7	266	80	27	140	42	14	79	24	8
4C	Seattle, WA	57	17	6	84	25	8	100	30	10	82	25	8	67	20	7	60	18	6	247	74	25	129	39	13	74	22	7
5A	Chicago, IL	73	22	7	104	31	10	122	37	12	113	34	11	88	26	9	79	24	8	263	79	26	152	46	15	92	28	9
5B	Boulder, CO	63	19	6	90	27	9	106	32	11	101	30	10	74	22	7	66	20	7	257	77	26	139	42	14	83	25	8
. SC	Ketchican, AK	66	20	7	93.	28	9	109	33	11	97	29	10	55	17	6	72	22	7	246	74	25	138	41	14	89	27	9
6A	Minneapolis, MN	77	23	8	108	32	11	126	38	13	121	36	12	89	27	9	80	24	8	263	79	26	156	47	16	97	29	10
6B	Helena, MT	65	20	7	92	28	9	108	32	11	98	29	10	72	22	7	62	19	6	250	75	25	138	41	14	86	26	9
7	Duluth, MN	78	23	8	110	33	11	108	32	11	114	34	11	85	26	9	73	22	7	254	76	25	153	46	15	101	30	10
7.5	Kenai, AK	70	21	7	97	29	10	113	34	11	105	32	11	56	17	6	73	22	7	246	74	25	141	42	14	96	29	10
8	Fairbanks, AK	76	23	8	104	31	10	120	36	12	119	36	12	69	21	7	64	19	6	247	74	25	148	44	15	107	32	11

Energy Use Intensity (EUI) Targets, by Building Type and Climate Zone, KBtu/ft2-yr na = not available In EPA "Target Finder"

EVALUATION IN RELATIONSHIP WITH

BASELINE SOLUTION based on Code* compliant element as a basic benchmark

*) for example: LEED certification uses ASHRAE 90.1

City	Miami	Houston	Phoenix	Atlanta	Los Angeles	Las Vegas	San Francisco	Baltimore	Albuquerque	Seattle	Chicago	Denver	Minneapolis	Helena	Duluth	Fairbanks
Medium Office	39	42	40	41	33	37	38	45	38	42	48	41	54	48	57	77
Stand- alone Retail	62	63	60	61	44	56	50	72	61	65	81	69	93	83	104	145
Quick Service Restaurant	535	549	538	561	496	541	524	609	567	575	657	604	713	663	765	949
Large Hotel	99	108	100	116	105	105	113	127	119	124	138	131	150	144	163	196
Mid-Rise Apartment	39	39	38	38	31	36	33	42	37	38	47	41	54	48	59	76

WHY, AS ARCHITECTS, WE NEED TO DEAL WITH ENERGY SIMULATION?

ENVIRONMENTAL SYSTEM DETERMINANTS

ENVIRONMENTAL SYSTEM DETERMINANTS

MODELING FOR PASSIVE DESIGN

The term 'Passive Design' here refers to design strategies, technologies and solutions that effectively take advantage of the environmental conditions outside the building to maximise the energy and cost savings while ensuring the core building facilities and provisions (such as indoor comfort, safety, health, etc.) are not compromised. The environmental conditions can provide several advantages or disadvantages to the building such as the following:

• Day lighting: can reduce the energy used for artificial lighting but excessive and improper exposure may result in glare and other forms of visual discomfort

Natural ventilation: can reduce mechanical ventilation energy to move air around but can result in hygiene issues and over-cooling in cold climates
Natural cooling: to reduce the need for excessive air-conditioning or mechanical cooling in hot climates

Natural heating: to use the energy from the sun to provide heat indoors in cold climates instead of providing excessive artificial heating. But this needs to be managed in hot climates to reduce air-conditioning energy use
Shading: (from trees or neighbouring buildings) can reduce heat from direct sun exposure in hot climates but can obstruct views and natural light and heat in cold climates.

MODELING FOR PASSIVE DESIGN

"archetypes is the level of basic architectural design where issues of siting, orientation, location, shape, proportions and surface to volume ratio are considered, along with neighborhood or urban fabric context of building groups that set the pattern for access to sun, wind and lights"-sw&Lpg.6

ENVIRONMENTAL DESIGN USING MASS COMPUTATIONAL MODELING

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

USING MASS COMPUTATIONAL MODELING FOR PRELIMINARY ENERGY ASSESSMENT

WHY?:

Initial mass modeling addresses fundamental design parameters, including the building envelope, orientation and form, typically without including mechanical or electrical systems in a manner it can speed up analysis and allow the evaluation of many different alternatives.

It provides crucial design guidance and useful feedback to the design team on how the form, orientation, programmatic strategies, and other variables will likely affect the project's performance in terms of energy, daylighting, comfort, and other design characteristics.

BIM FOR INTEGRATED DELIVERY PROJECT (IPD)

- 1. We need to go with an engineering-integrated process since the early stage
- 2. Bim is not a new and more efficient way of production. BIM is a chance.
- 3. It is a way to integrated specialisms, to have a comprehensive view of the whole building and more than that a view to anticipate the construction and all the problems and conflicts that can arise on the site.
- 4. It is a way to visualize materiality and for that reason to have an understanding on how the building works.
- 5. BIM and object oriented computing in general are providing us a way to get an holistic approach to design

BIM allows us to integrate time, costs, manufacturing, facility management and maintenance information; to check conflicts.

More than that BIM let us to anticipate decisions, evaluate alternatives and their effects, to extend and speed up optioneering

It's a way to be aware about our decisions

AVAILABLE COMPUTATIONAL TOOLS FOR ENERGY MODELING

ENERGY ANALYSIS SOFTWARE

- 1. EnergyPlus by the U.S. Department of energy (free tool), available at: https:// energyplus.net/.
- 2. IES Virtual Environment (VE): <u>http://www.iesve.com/</u>.
- 3. eQUEST, quick energy simulation tool: http://www.doe2.com/equest/. AutodeskGreenBuildingStudio:https://gbs.autodesk.com/GBS/(cloudbased).

ENERGY MODELING AND SIMULATION SOFTWARE

- 1. 23 TRNSYS: http://www.trnsys.com/.
- 2. DesignBuilder: http://www.designbuilder.co.uk/.
- 3. Radiance: Lighting simulation tool: http://www.radiance-online.org/.
- 4. OpenStudio by NREL: https://www.openstudio.net/ (open source, free interface

TOOLS USING ENERGY PLUS AND RADIANCE

- 1. Dymola: http://www.3ds.com/products-services/catia/products/dymola.
- 2. Autodesk Revit Energy plug in (previously known as Ecotect).

Tools that Support gbXML

- CAD/BIM
 - Autodesk
 - AutoCAD Architecture & MEP
 - Revit Architecture & MEP
 - Green Building Studio (GBS)
 - Ecotect
 - Vasari
 - Bentley
 - Architecture
 - Building Mechanical Systems
 - Trimble
 - SketchUp
 - Graphisoft
 - ArchiCAD
 - Mac and Windows
- BIMStorm
 - Rhino/Grasshopper

- HVAC/Energy/Lighting
 - Bentley Hevacomp
 - blueCAPE CFD
 - Cadsoft Envisioneer
 - Carrier
 - Hourly Analysis Program (HAP)
 - DesignBuilder
 - DIALux
 - DOE-2.2 & eQuest (via GBS)
 - Elite Software
 - EnergySoft
 - Environmental Design Solutions Ltd.
 Tas
 - GreenSpace Live (gModeller)
 - IES, Ltd.
 - IES <Virtual Environment>
 - Trane

TRACE 700

Massing contribution to a passive design

Building location and orientation on the site Building layout and form Building envelope characteristics

(windows, walls, roof, insulation and shading).

It is important to note that Building Energy Modeling is a computer program and the accuracy of results would largely depend on the inputs provided to the model. In this context, one should be mindful of the expression 'garbage-in-garbage-out'.

Sample Building Analysis is focused on a representative part of the building to be more accurate, deep and able to include more parameters.

Whole Building Analysis is focused on the whole building It needs to reduce the level of details and to consider few parameters.

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

While a whole building energy simulation estimates the performance for an entire building, representative floors are typically modeled, including the lowest (1), middle (2), and top floors (3) of a high-rise, with multipliers being used to account for the other floors. Each atypical floor is modeled separately. Shoebox modeling analyzes a single floor or space within a floor for energy performance. For instance, a corner of a building (4) that may be exposed to solar energy from multiple directions can be tested for comfort and energy performance. A shoebox model can also be used to estimate and improve the energy use of smaller or unique spaces (5). Any scale can be studied more quickly with a single-aspect analysis, including an entire building, a single floor, or unique condition.

Source: Photo of LEED Gold certified MixC Chengdu © 2012 Callison LLC.

SHOEBOX ANALYSIS

1-Set boundary conditions able to represent meaningful or critical parts, systems, aspects of the building

2-Set adiabatic perimeters

3-Iterative input of different conditions in order to test different behaviours

4. Run analysis

5. Analize and evaluate

OTHER TYPES OF MODELING FOR SIMULATION

STATIC

DINAMIC

TIME-STEP analysis = over a period of time hour season, year

POINT-IN-TIME (PIT) analysis= in a precise single moment segment like hottest hours

MODELING & SIMULATION IN THE EARLY STAGE

Conceptual & Schematic Design

involves the evaluation of different ideas. It is not an analytical activity but more conceptual, not detailed

WHICH LEVEL OF DETAIL IS REQUIRED IN THE EARLY STAGE THE BIM PROCESS

Early Stage Design

WHICH LEVEL OF DETAIL IS REQUIRED IN THE EARLY STAGE THE BIM PROCESS

https://sustainabilityworkshop.autodesk.com/buildings/project-phases-level-development

LOD phases can be summarized as follows.

LOD 100: Modeled elements are at a conceptual point of development. Information can be conveyed with massing forms, written narratives, and 2D symbols.

LOD 200: Modeled elements have approximate relationships to quantities, size, location, and orientation. Some information may still be conveyed with written narratives.

LOD 300: Modeled elements are explained in terms of specific systems, quantities, size, shape, location, and orientation.

LOD 400: Continuation of LOD 300 with enough information added to facilitate fabrication, assembly, and installation.

LOD 500: Modeled elements are representative of as installed conditions and can be utilized for ongoing facilities management.

In any case the optimized solution is a compromise between different aspects

Level 3 Overview – Scales from Concept to Detail

DO THE RIGHT CHOICE FROM THE BEGINNING Level 3 Overview – Scales from Concept to Detail

CONCEPTUAL MASS MODELING IN THE EARLY STAGE DESIGN

CONCEPTUAL MASS MODELING IN THE EARLY STAGE DESIGN

Salva imitives representing 'conceptual mass forms'

FormIt primitives representing 'design detail'

An illustration of FormIt conceptual mass models suited (and not) for Energy Analysis

CONCEPTUAL MASS MODELING IN THE EARLY STAGE DESIGN

MASS MODELING FOR ENERGY EVALUATION USING REVIT + GREEN BUILDING STUDIO

WHAT IS REVIT?

MASS ENERGY EVALUATION WORKFLOW IN AUTODESK

Architectural Modeling

Develops from Concept to Detail with a variety of modeling practices.

Typically includes many small modeling inaccuracies & omissions.

Fully automated using Architectural Model elements with little to no 'cleaning or special modifications'.

Whole Building Energy Simulation

Clear indicators of performance range with real time cause and effect feedback.

Custom detailed dashboards and parametric run configuration.

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

1st STEP: MODEL ARCHITECTURAL MASSES

1st STEP: MODEL ARCHITECTURAL MASSES

• create grid levels

R-	1	Autodesk Revit 2017 - STUDENT VERSION	- chandigarh.rvt - Elev	ration: Est			Type a keyword or phrase	田 区 ☆ 💄 giusept	veridolf* 🕱 🕐 - I
Architecture Structure S	ystems Insert Annotate Ana	alyze Massing & Site Collaborate	View Manage Add	tos Quantification Mo	adify • •		🔀 🎖 🏥 🕂 !	№ 8 ** #	e e 45
Modify Wall Door Window Co	omponent Column Roof Ce	eiling Floor Curtain Curtain Mullion	Railing Ramp Stair	Model Model Model	literan lan lag	Area Area	Tag By Shaft Wall V	ertical Dormer Level Grid	Set Show Ref Viewer
Caluat w	0.314	System Grid	Circulation	Text Line Group	Room Room	Doumles a	Area Face	Dahasa	Plane
	· 2010 0.055	5 0	Circulation	wouer	NUCHT OL	Area	Opening	Catorn	Work Plane
000	A MA WYEL								
Properties X	Project Browser - chandigarh X								
Elevation Prospetto Elevation: Est v bit Edit Type Graphics v View Scale 1:100 Scale Value 1:100 Disalay Model Normal	 A Views (tutto) Structural Plans (Pianta strut Floor Plans (Pianta del pavir O - Piano Terra 1 - Piano Primo Livello 2 Livello 3 Livello 4 Planimetria 								
Detail Level Coarse	# Ceiling Plans (Pianta del con		\cap	\cap	0	0			
Parts Visibility Show Original	B 3D Views (Vista 3D)		(1)	(2)	(3)	(4))		
Visibility/Graphic Edit	(3D)		Y	Y	Y	Y			
Graphic Display Edit	 Elevations (Prospetto) 								
Hide at scales co 1 : 1000	Est								
Discipline Architectural	Overt								1230.00 Livello 4
Show Hidden Li By Discipline	Sud								
Color Scheme L Background					1				
Color Scheme <none></none>	= Schedules/Quantities	a new state and the							900 00 T 1 wete 2
Default Analysis None	E Sheets (tutto)								Man Dvero 3
Reference Label	+ 🗉 Families								
Sun Path	- R Groups		1	1	1	1			
Extents	🗢 Revit Links								
Crop View				and the second second	states and the states of the s				and the second se
Crop Region Visi									Livello 2
Annotation Crop									
Far Clipping Clip without line									
Far Clip Offset 5099.40					1	1			
Scope Box None			+-		+	+			Piano Primo
Associated Datum None		and the second se	1						
Identity Data *				1	1	1			
View Template <none></none>				1		- î			
View Name Est				10.000		1.1.1.1			000 - Plano Terra
Dependency Independent			+-			+.			Co
Title on Sheet									
Referencing Sheet									
Referencing Detail	1								
Phasing									
Phase Filter Mostra tutto									
Phase Stato di Progetto									

1st STEP: MODEL ARCHITECTURAL MASSES

• start mass modeling

- □ □ Views (tutto)
 - B Structural Plans (Pianta strut
 - E Floor Plans (Pianta del pavir

Diana Drima

- 0 - Piano Terra

Edit Type

1st STEP: MODEL ARCHITECTURAL MASSES

• create floors from the generic mass using grid level

2st STEP: SET FUNCTIONAL DESTINATION

Advanced Energy Settings		
Parameter	Value	^
Detailed Model	*	
Target Percentage Glazing	40%	
Target Sill Height	75.00	
Glazing is Shaded		
Shade Depth	60.00	
Target Percentage Skylights	0%	
Skylight Width & Depth	91.44	
Building Data	*	
Building Type	Office	
Building Operating Schedule	12/5 Facility	v

TYPICAL INPUT PARAMETERS FOR BUILDING ENERGY MODELING

Model input set	Input parameters
Location specific	 Local climate data (typically imported via a weather file in the software) Interior conditions and set points
Architectural massing and form	 (Typically imported through 3D geometrical modeling tools such as Google Sketchup) Building shape and orientation Total floor area Number of floors and thermal zoning Floor-to-ceiling height
Building envelope	 Window-to-wall ratio Area, orientation, solar absorptance, and thermal transmittance of all opaque building surface Area, orientation, solar heat gain coefficient, visible light and thermal transmittance, and shading of all glazing components Mass of building components Infiltration rates
Thermal and electric loads	 Lighting intensity Plug loads intensity Sensible and latent (moisture) loads from people and other equipment Pumps, motors, fans, elevators
Schedule of operations	 Lighting schedules Plug-load schedules Occupancy schedules
Mechanical and Electrical (M&E) systems	 Cooling/Heating system type, including the source, distribution, and terminal units Ventilation system type Fan and pump inputs Economizers and/or heat recovery systems Domestic hot-water system Specialty systems (e.g. fume hoods, exhausts) Renewable-energy systems

Commercial software have built-in industry standard default related to physical and technological properties, and benchmarks.

F 7

6.4

a

20 22

[Undefined]

[Undefined]

?

Close

0.00

5.00

2st STEP: SET FUNCTIONAL DESTINATION

* eventually: specify Scheduling and Hourly Operational Profile

30

31

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

School schedule on Sunday

3st STEP: CHECK & SET DEFAULT CONSTRUCTION TYPES

Heating and Cooling Loads			1	× ×
A	General Details			B
(mar)	Parameter		Value	8-1
	Building Type	Office		
	Location	Boston, M	A	
	Ground Plane	Level 1		
	Project Phase	New Const	truction	
	Sliver Space Tolerance	1' 0"		
	Building Envelope	Use Functi	on Paramet	er 😑 🖂 S
	Building Service	VAV - Sing	le Duct	E.C.
	Schematic Types	<building< td=""><td>,</td><td></td></building<>	,	
	Building Infiltration Class	None		
	Report Type	Simple		E (4) 0
	Use Load Credits			
	C	ategory	Override	Analytic Construction
	Roofs			4 in lightweight concrete (U=0.2245 BTU/(h-ft ² .*F))
	Exterio	r Walls		8 in lightweight concrete block (U=0.1428 BTU/(h-ft ² -*F))
	Interio	r Walls		Frame partition with 3/4 in gypsum board (U=0.2595 BTU/(h-ft ² -
	Ceilin	15		8 in lightweight concrete ceiling (U=0.2397 BTU/(h-ft ² .*F))
	Floors			Passive floor, no insulation, tile or vinyl (U=0.5210 BTU/(h-ft ² .*F)
<	Slabs			Un-insulated solid (U=0.1243 BTU/(h-ft ² ·*F))
	Doors			Metal (U=0.6520 BTU/(h-ft ² .*F))
6	Exterio	r Windows		Large double-glazed windows (reflective coating) - industry (U
	Interio	r Windows		Large single-glazed windows (U=0.6498 BTU/(h-ft ² .*F), SHGC=0.
	Skyfig	nts		Large double-glazed windows (reflective coating) - industry (U
000		a	None	Shading factor for exterior windows: 0
				OK. Cancel

?

X

3st STEP: CHECK & SET DEFAULT CONSTRUCTION TYPES

Schematic Types

Construction Types	Analysis Properties							
<building></building>	By default, analysis properties are generated from information in Conceptual Types. Properties of Schematic Types are used when override is selected.							
	Category	Override	Analytic Construction					
	Roofs		4 in lightweight concrete (U=1.2750 W/(m ² ·K)) 8 in lightweight concrete block (U=0.8108 W/(m ² ·K)) Frame partition with 3/4 in gypsum board (U=1.4733 W/(m ² ·K)) 8 in lightweight concrete ceiling (U=1.3610 W/(m ² ·K)) Passive floor, no insulation, tile or vinyl (U=2.9582 W/(m ² ·K))					
	Exterior Walls							
	Interior Walls							
	Ceilings							
	Floors							
	Slabs		Un-insulated solid (U=0.7059 W/(m ² ·K))					
	Doors		Metal (U=3.7021 W/(m ² ·K))					
	Exterior Windows		Large double-glazed windows (reflective coating) - industry (U					
	Interior Windows		Large single-glazed windows (U=3.6898 W/(m ² ·K), SHGC=0.86)					
	Skylights		Large double-glazed windows (reflective coating) - industry (U					
*1 [] *1	All	None	Shading factor for exterior windows: 0					

Cancel

OK

4st STEP: DEFINE DIFFERENT ALTERNATIVES CONCEPTUAL MASS OPTIONEERING

1ST PROPOSAL: RADIAL DISPOSITION

2ND PROPOSAL: OPTIMAL ORIENTATION DSIPOSITION

3RD PROPOSAL: FLAT DISPOSITION

considering and evaluating:
-building orientation
-compactness (footprint/volume)
-glazing ratio

4st STEP: GENERATE THERMAL BLOCK

4st STEP: GENERATE THERMAL BLOCK

Autodesk	Revit 2017 - STUDENT VERSION -	Project1 - 3D View: {3D}					F Type a keyword	or phrase	883	💄 giu
lyze Mas Consistency	sing & Site Collaborate View Space Space Space Zone Separator Tag	Manage Add-Ins (Quantification	Modify		Generate Insight	Heating Lighting Solar Cooling	Robot Structural Analysis	Analyze in Cloud	
Tools ≌ ¥ि+∓	Spaces & Zones 🔻	Reports & Schedules 🎽 Ch	neck Systems	Color Fill	Energy Analysis		Insight		Structural Ai	nalysis

4st STEP: GENERATE THERMAL BLOCK

5st STEP: RUN ENERGY COMPUTATION

6st STEP: PRODUCE & PRINT AND READ ENERGY REPORT

Energy Analysis Result

Building Performance Factors

-	
Location:	Chandigarh, India
Weather Station:	429042
Outdoor Temperature:	Max: 46°C/Min: 3°C
Floor Area:	665 m²
Exterior Wall Area:	844 m²
Average Lighting Power:	10.66 W / m²
People:	144 people
Exterior Window Ratio:	0.40
Electrical Cost	\$0.08 / kWh
Fuel Cost	\$0.78 / Therm

Energy Use Intensity

Electricity EOI. 176 KWIT/SHT/y	
Fuel EUI: 132 MJ / sm / yr	
Total EUI: 764 MJ / sm / yr	

Life Cycle Energy Use/Cost

Life Cycle Electricity Use:	3,501,393 kWh
Life Cycle Fuel Use:	2,638,537 MJ
Life Cycle Energy Cost:	\$136,069
*30-year life and 6.1% discount rate for costs	

Renewable Energy Potential

Roof Mounted PV System (Low efficiency):	13,644 kWh / yr	
Roof Mounted PV System (Medium efficiency):	27,287 kWh / yr	
Roof Mounted PV System (High efficiency):	40,931 kWh / yr	
Single 15' Wind Turbine Potential:	414 kWh / yr	
*PV efficiencies are assumed to be 5% 10% an	d 15% for low medium and high efficiency systems	

Annual Carbon Emissions

Annual Energy Use/Cost

Energy Use: Electricity

Domestic Hot Water 52%

\$337

\$653

45,376

87,950

Monthly Heating Load

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Monthly Cooling Load

-20000 Jan 'Feb Mar' Apr'May Jun 'Jul' Aug 'Sep 'Oct Nov 'Dec

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

Monthly Design Data

Annual Temperature Bins

Diurnal Weather Averages

Humidity

© Copyright 2015 Autodesk, Inc. All rights reserved. Portions of this software are copyrighted by James J. Hirsch & Associates, the Regents of the University of California, and others.

Annual Wind Rose (Frequency Distribution)

Monthly Wind Roses

Monthly Fuel Consumption

Monthly Electricity Consumption

Monthly Peak Demand

Energy Analysis Result 6st STEP: PRODUCE & PRINT AND READ ENERGY REPORT

* subtract renewable energy contribution in order to have comparable alternatives

Building Performance Factors

Location:	Chandigarh, India
Weather Station:	429042
Outdoor Temperature:	Max: 46°C/Min: 3°C
Floor Area:	665 m²
Exterior Wall Area:	844 m²
Average Lighting Power:	10.66 W / m²
People:	144 people
Exterior Window Ratio:	0.40
Electrical Cost:	\$0.08 / kWh
Fuel Cost:	\$0.78 / Therm
Energy Use Intensity	
Electricity EUI:	176 kWh / sm / yr
Fuel EUI:	132 MJ / sm / yr
Total EUI:	764 MJ / sm / yr
Life Cycle Energy Use/Cost	
Life Cycle Electricity Use:	3,501,393 kWh
Life Cycle Fuel Use:	2,638,537 MJ
Life Cycle Energy Cost:	\$136,069
So year me and o. Ho discount fate for costs	
Renewable Energy Potential	
Roof Mounted PV System (Low efficiency):	13,644 kWh / yr
Roof Mounted PV System (Medium efficiency):	27,287 kWh / yr
Roof Mounted PV System (High efficiency):	40,931 kWh / yr
Single 15' Wind Turbine Potential:	414 kWh / yr
*PV efficiencies are assumed to be 5%, 10% and 15% for low, medium and high efficiency systems	

Annual Carbon Emissions

Energy Analysis Result 6st STEP: PRODUCE & PRINT AND READ ENERGY REPORT

* subtract renewable energy contribution in order to have comparable alternatives

Building Performance Factors

Location:	Chandigath India
Weather Station:	400040
Weather Station.	429042
Outdoor Temperature:	Max: 46°C/Min: 3°C
Floor Area:	665 m²
Exterior Wall Area:	844 m²
Average Lighting Power:	10.66 W / m²
People:	144 people
Exterior Window Ratio:	0.40
Electrical Cost:	\$0.08 / kWh
Fuel Cost:	\$0.78 / Therm
Energy Use Intensity	
Electricity EUI:	176 kWh / sm / yr
Fuel EUI:	132 MJ / sm / yr
Total EUI:	764 MJ / sm / yr
Life Cycle Energy Use/Cost	
Life Cycle Electricity Use:	3,501,393 kWh
Life Cycle Fuel Use:	2,638,537 MJ
Life Cycle Energy Cost:	\$136,069
ou year me and of the discount rate for costs	
Renewable Energy Potential	
Roof Mounted PV System (Low efficiency):	13,644 kWh / yr
Roof Mounted PV System (Medium efficiency):	27,287 kWh / yr
Roof Mounted PV System (High efficiency):	40,931 kWh / yr
Single 15' Wind Turbine Potential:	414 kWh / yr
*PV efficiencies are assumed to be 5%, 10% and	d 15% for low, medium and high efficiency systems

Annual Carbon Emissions

6st STEP: PRODUCE & PRINT AND READ ENERGY REPORT

* compare Fuel vs Electricity (HVAC/Lighting) in order to understand if the building is mainly that or to cool

prof. arch. Giuseppe Ridolfi

* pay attention to
Energy Loads in order to
understand:
-the biggest concern for
gains/losses

* pay attention to Energy Loads in order to understand the biggest concern for gains/losses

Passive Gains Breakdown

This analysis will show us the areas of biggest concern for gains/losses in our building.

Here we can see that heat loss through the external fabric is the largest contributor.

Internal vs. External Loads in Energy Analysis Output

Internal Loads Heat generated from within the building.

External Loads Heat gain or loss due to conduction, convection, and radiation through the envelope.

- Misc Equipment Lighting Occupants Window Solar Window Conduction Infiltration Underground Surfaces Interior Surfaces Roofs Walls
- computers and office equipment.

Monthly Heating Loads

Heat gains that offset the heating loads.

<u>Heat energy being lost.</u> Heat must be added to maintain thermal comfort.

WHY DO WE HAVE DIFFERENT LOADS IN THE SAME PERIOD?

Monthly Cooling Loads

<u>Heat energy being gained</u>. Heat must be removed to maintain thermal comfort.

Heat losses that offset cooling loads.

heating loads.

ENVIRONMENTAL DESIGN

prof. arch. Giuseppe Ridolfi

Coldest hours >> Night Hours

Monthly Cooling Loads

Heat energy being gained. Heat must be removed to maintain thermal comfort.

Heat losses that offset cooling loads.

Peak Heating Load

The peak heating load represents the amount of heat lost to the outdoor environment at design outdoor and indoor conditions, which must be made up by the HVAC system to maintain occupant comfort (Figure 5). There is one relatively straightforward and uncomplicated heat loss calculation procedure used in ACCA MJ8. The components of the heating load calculation are covered in depth in Section 4 of the ACCA MJ8. The total estimated heat loss is a combination of the sensible heat loss through conduction, infiltration, and ventilation loads. No credit is taken for solar gains or internal loads in calculating the heating load because the peak heat loss occurs at night during periods of occupant inactivity.

Figure 5. Heat Loss Locations

Peak Cooling Load

Peak cooling loads represent the amount of heat gained by the house from the outdoor environment at design conditions, which must be removed by the HVAC system to maintain occupant comfort. Cooling loads are made up of the sensible and latent heat gains. The mechanisms of heat gain are conduction, infiltration, ventilation, and radiation (Figure 6). The components of the cooling load calculation are covered in depth in ACCA MJ8.

Figure 6. Heat Gain Locations

<no sun / no occupants contribution>

7st STEP: BENCHMARKING OPTIONS AND TUNING SOLUTIONS WITH AUTODESK INSIGHT

Early Targeting & Feasibility

Energy Cost Range, Benchmarks, Factors & History

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

Operating Schedule

The typical hours of use by building occupants.

Current Setting: 24/7 - 12/7

P

ENVIRONMENTAL DESIGN prof. arch. Giuseppe Ridolfi

Window Glass - West

Glass properties control the amount of daylight, heat transfer & solar heat gain into the building, along with other factors.

Current Setting: Dbl LoE - Trp LoE

P

P

Window Shades - West

Shades can reduce HVAC energy use. The impact depends on other factors, such as window size and solar heat gain properties.

Current Setting: BIM

Window Shades - East

P

9

Shades can reduce HVAC energy use. The impact depends on other factors, such as window size and solar heat gain properties.

Building Orientation

Rotates a building clockwise from 0 degrees, e.g. 90 degrees rotates the North side of the building to face East.

Current Setting: 270

Daylighting & Occupancy Controls

Represents typical daylight dimming and occupancy sensor systems.

Current Setting: None - Daylighting & Occupancy Controls

Window Shades - South

Shades can reduce HVAC energy use. The impact depends on other factors, such as window size and solar heat gain properties.

Current Setting: 1/6 Win Height - 2/3 Win Height P

9

Introduction to To... 🔣 The solar envelope: h... 🗰 File CAD NF (AFNOR) :...

8st STEP: COMPARE OPTIMIZED ALTERNATIVE SOLUTIONS

9st STEP: FIND HOTTEST AND COLDEST BLOCKS/SURFACES IN ORDER TO VERIFY THE CONSISTENT ALLOCATION OF SPACES AND ENVELOPE SOLUTIONS

END